

A-LEVEL MATHEMATICS 7357/1

Paper 1

Mark scheme

June 2018

Version: 1.0 Final

PMT

186A73571/MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Mark scheme instructions to examiners

General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- marking instructions that indicate when marks should be awarded or withheld including the principle on which each mark is awarded. Information is included to help the examiner make his or her judgement and to delineate what is creditworthy from that not worthy of credit
- a typical solution. This response is one we expect to see frequently. However credit must be given on the basis of the marking instructions.

If a student uses a method which is not explicitly covered by the marking instructions the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Key to mark types

М	mark is for method
R	mark is for reasoning
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
F	follow through from previous incorrect result

Key to mark scheme abbreviations

CAO	correct answer only
CSO	correct solution only
ft	follow through from previous incorrect result
'their'	Indicates that credit can be given from previous incorrect result
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
sf	significant figure(s)
dp	decimal place(s)

AS/A-level Maths/Further Maths assessment objectives

A	D	Description				
	AO1.1a	Select routine procedures				
AO1	AO1.1b	Correctly carry out routine procedures				
	AO1.2	Accurately recall facts, terminology and definitions				
	AO2.1	Construct rigorous mathematical arguments (including proofs)				
	AO2.2a	Make deductions				
AO2	AO2.2b	Make inferences				
AUZ	AO2.3	Assess the validity of mathematical arguments				
	AO2.4	Explain their reasoning				
	AO2.5	Use mathematical language and notation correctly				
	AO3.1a	Translate problems in mathematical contexts into mathematical processes				
	AO3.1b	Translate problems in non-mathematical contexts into mathematical processes				
	AO3.2a	Interpret solutions to problems in their original context				
	AO3.2b	Where appropriate, evaluate the accuracy and limitations of solutions to problems				
AO3	AO3.3	Translate situations in context into mathematical models				
	AO3.4	Use mathematical models				
	AO3.5a	Evaluate the outcomes of modelling in context				
	AO3.5b	Recognise the limitations of models				
	AO3.5c	Where appropriate, explain how to refine models				

Examiners should consistently apply the following general marking principles

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to students showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the student to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Work erased or crossed out

Erased or crossed out work that is still legible and has not been replaced should be marked. Erased or crossed out work that has been replaced can be ignored.

Choice

When a choice of answers and/or methods is given and the student has not clearly indicated which answer they want to be marked, mark positively, awarding marks for all of the student's best attempts. Withhold marks for final accuracy and conclusions if there are conflicting complete answers or when an incorrect solution (or part thereof) is referred to in the final answer.

MARK SCHEME - A-LEVEL MATHEMATICS - 7357/1 - JUNE 2018

Q1	Marking Instructions	AO	Marks	Typical Solution
1	Circles correct answer	AO1.1b	B1	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{x^3}$
	Total		1	

Q2	Marking Instructions	AO	Marks	Typical Solution
2	Circles correct answer	AO1.1b	B1	$y = 5 \times 5^x$
	Total		1	

Q	Marking Instructions	AO	Marks	Typical Solution
3	Circles correct answer	AO1.1b	B1	4
	Total		1	

Q	Marking Instructions	AO	Marks	Typical Solution
4	Takes logs of an equation. Must be correct use of logs.	AO1.1a	M1	$y = e^{x-4}$
	Obtains correct inverse function in any correct form	AO1.1b	A1	$ \ln y = x - 4 $ $ 4 + \ln y = x $
	Deduces correct domain	AO2.2a	B1	$f^{-1}(x) = 4 + \ln x, x > 0$
	Total		3	

Q	Marking Instructions	AO	Marks	Typical Solution
5(a)	Differentiates 2^t or 2^{-t} to obtain $\pm A \ln 2 \times 2^{\pm t}$	AO1.1a	M1	
	Obtains $\frac{\mathrm{d}y}{\mathrm{d}t} = (\pm A \ln 2) 2'$ and	AO1.1b	A1	$\frac{\mathrm{d}y}{\mathrm{d}t} = (3\ln 2)2'$
	$\frac{\mathrm{d}x}{\mathrm{d}t} = (\pm B \ln 2) 2^{-t}$			$\frac{\mathrm{d}x}{\mathrm{d}t} = (-4\ln 2)2^{-t}$
	Uses chain rule with correct $\frac{dy}{dt}$	AO2.1	R1	$\frac{dy}{dt} = (3\ln 2)2^{t}$ $\frac{dx}{dt} = (-4\ln 2)2^{-t}$ $\frac{dy}{dx} = \frac{(3\ln 2)2^{t}}{(-4\ln 2)2^{-t}}$
	and $\frac{dx}{dt}$ and completes rigorous argument to obtain fully correct			$= -\frac{3}{4} \times 2^{2t}$
	printed answer			
(b)	Rearranges to write 2^{-t} in terms of <i>x</i> or 2^{t} in terms of <i>y</i> Or	AO3.1a	M1	$2^{t} = \frac{y+5}{3}$ $2^{-t} = \frac{x-3}{4}$
	Writes given expression in terms of <i>t</i>			
	Eliminates t Or Compares coefficients PI by a=5	AO1.1a	M1	$1 = \left(\frac{y+5}{3}\right) \left(\frac{x-3}{4}\right)$
	or <i>b</i> =-3			12 = xy + 5x - 3y - 15
	Completes rigorous argument to obtain correct values of <i>a</i> , <i>b</i> and <i>c</i> and write the Cartesian equation in the required form ISW	AO2.1	R1	-xy + 5x - 3y = 27
				ALT
				$xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)$ $= 12 - 15 + (4a - 20)2^{-t} + (3b + 9)2^{t} + 3a - 5b$ $a = 5, b = -3$
				xy + 5x - 3y = -3 + 15 + 15 = 27
	Total		6	

Q 6(a)	Marking Instructions Writes in a form to which the binomial expansion can be applied	AO AO3.1a	Marks	Typical Solution
			M1	$1 1 x^{-\frac{1}{2}}$
	binomial expansion can be applied			$\frac{1}{\sqrt{4+x}} = \frac{1}{2} \left(1 + \frac{x}{4}\right)^{-\frac{1}{2}}$
	Accept $A(1+\frac{x}{4})^{-\frac{1}{2}}$			$\begin{bmatrix} (1)(3)(x)^2 \end{bmatrix}$
				$\approx \frac{1}{2} \left 1 + \left(-\frac{1}{2} \right) \frac{x}{4} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^2}{2!} \right $
	Uses binomial expansion for their	AO1.1a	M1	$2^{1}(2)4^{1}2!$
	$(1+kx)^{\pm \frac{1}{2}}$ with at least two terms			
	correct (can be unsimplified)			$\approx \frac{1}{2} \left[1 - \frac{x}{8} + \frac{3x^2}{128} \right]$
	Obtains correct simplified answer	AO1.1b	A1	
	No need to expand brackets			$\approx \frac{1}{2} - \frac{1}{16}x + \frac{3}{256}x^2$
	CAO			2 10 250
(b)	Substitutes $-x^3$ in their three term	AO1.1a	M1	$\frac{1}{\sqrt{4-x^3}} \approx \frac{1}{2} - \frac{1}{16} \left(-x^3 \right) + \frac{3}{256} \left(-x^3 \right)^2$
_	expansion from part (a)			$\sqrt{4-x^3}$ 2 16 256 256
	Obtains correct expansion.	AO1.1b	A1F	$1 x^3 3x^6$
	FT their (a)			$\approx \frac{1}{2} + \frac{x^3}{16} + \frac{3x^6}{256}$
(c)	Uses their three term expansion as	AO1.1a	M1	
(•)	the integrand ignore limits PI by	/ to 1114		$\int_{0}^{1} \frac{1}{\sqrt{4-x^{3}}} dx \approx \int_{0}^{1} \frac{1}{2} + \frac{x^{3}}{16} + \frac{3x^{6}}{256} dx$
	next mark			$\sqrt[30]{\sqrt{4-x^3}}$ $\sqrt[30]{2}$ 16 256
	Integrates (at least two terms	AO1.1a	M1	$\begin{bmatrix} x & x^4 & 3x^7 \end{bmatrix}^1$
-	correct) Obtains correct value	AO1.1b	A1	$\approx \left[\frac{x}{2} + \frac{x^4}{64} + \frac{3x^7}{1792}\right]_0^1$
	CAO	AUT.10	AI	
				$\approx \frac{1}{2} + \frac{1}{64} + \frac{3}{1792}$
				≈0.5172991
(d)(i)	Explains that each term in the	AO2.4	E1	Each term in the expansion is
	expansion is positive Deduces that increasing the	AO2.2a	R1	positive.
	number of terms will increase the	702.2a		So increasing the terms will
	estimated value and that the value			increase the estimated value hence
	must be an underestimate.			the value must be an
	(Condone inference if evidence			underestimate.
	given ie value calculated			
(d)(ii)	numerically and compared) States the validity of their binomial	AO3.1a	B1F	The binomial expansion is valid for
	expansion for part (b)	,	511	$ x < \sqrt[3]{4}$
	Provided their $k \neq \pm 1$			$ \lambda > \sqrt{4}$
	2		F (
	Compares integral lower limit with	AO2.3	E1	$2 > \sqrt[3]{4}$
	validity of correct expansion CAO			
	Total		12	

Q	Marking Instructions	AO	Marks	Typical Solution
7(a)	Uses a technique which could lead to showing two lines are perpendicular. Obtains at least one correct distance (or distance ²) or gradient.	AO3.1a	M1	$AB^{2} = (8-15)^{2} + (17-10)^{2}$ = 98 $AC^{2} = (82)^{2} + (177)^{2}$ = 676
	Obtains three correct distances (or distance ²) or two gradients. Lengths: $7\sqrt{2}, 17\sqrt{2}, 26$ $AB = -\frac{7}{7}, BC = \frac{17}{17}$ Gradients:	AO1.1b	A1	$CB^{2} = (152)^{2} + (107)^{2}$ = 578 $AB^{2} + BC^{2} = 98 + 578$ = 676 = AC^{2}
	Completes correct rigorous argument to show required result Uses Pythagoras OR Multiplies gradients to show product is -1 AND Writes a concluding statement.	AO2.1	R1	Angle <i>ABC</i> is a right angle.
(b)(i)	Explains why AC is a diameter Must reference angle subtended by diameter (condone "angle in a semi-circle") or give full explanation.	AO2.4	E1	The angle subtended by a diameter is $90^\circ \therefore AC$ must be a diameter of the circle
(b)(ii)	Deduces correct radius (or radius ²)	AO2.2a	B1	$\sqrt{676}$
	Obtains mid-point of diameter	AO1.1b	B1	Radius $\frac{\sqrt{676}}{2} = 13$
	Uses $D(-8, -2)$ to find the distance or (distance ²) from <i>their</i> centre OE	AO1.1a	M1	Centre $\left(\frac{8-2}{2}, \frac{17-7}{2}\right) = (3,5)$
	Completes rigorous argument by	AO2.1	R1	
	comparing $\sqrt{170} > 13$ (or			Distance from centre to D
	170 > 169) to show that <i>D</i> lies			$(38)^2 + (52)^2 = 11^2 + 7^2$
	outside the circle			=170>169
	Tatal		0	So D lies outside the circle.
	Total		8	

Q	Marking Instructions	AO	Marks	Typical Solution
8(a)		AO1.2	B1	
•()	Uses $A = \frac{1}{2}ab\sin C$			1 - 1 - 1 - 1
				$\frac{1}{2}r \times \frac{r}{2}\sin\theta = \frac{1}{4}\left(\frac{1}{2}r^2\theta\right)$
	for triangle OAC or OAB			· · · ·
	PI by equation			$\Rightarrow \frac{r^2}{4}\sin\theta = \frac{1}{8}r^2\theta$
	Forms an equation relating the	AO3.1a	M1	1 0
	area of OAC and ABC			$\Rightarrow 2r^2 \sin \theta = r^2 \theta$
	in the form $Ar^2 \sin \theta = Br^2 \theta$			$\Rightarrow 2\sin\theta = \theta$
	Obtains fully correct equation ACF	AO1.1b	A1	AG
	Simplifies to obtain required	AO2.1	R1	
	equation, only award if all working correct with rigorous argument.			
(b)		AO1.1a	M1	$f(0) = 0$ $2 \sin \theta = 0$
(6)	Rearranges to the form $f(\theta) = 0$	7.01.10		$f(\theta) = \theta - 2\sin\theta = 0$
	PI by correct $\theta_2 \operatorname{or} \theta_3$			$\theta_n = 0$ $\theta_n - 2\sin\theta_n$
	Differentiates their $f(\theta)$ or uses	AO1.1b	A1	$\theta_{n+1} = \theta_n - \frac{\theta_n - 2\sin\theta_n}{1 - 2\cos\theta_n}$
	calculator PI correct $\theta_2 \operatorname{or} \theta_3$			$\theta_2 = 2.094395$
		AO1.1b	A1	$\theta_3 = 1.913222$
	Obtains correct $ heta_3$			$\theta_3 = 1.91322 (5 \mathrm{d.p.})$
(c)	Obtains percentage error for θ_3 AWRT 0.94%	AO3.2b	B1	0.935%
	Total		8	

Q	Marking Instructions	AO	Marks	Typical Solution
9(a)	Uses S_n for arithmetic sequence with $n = 6$ or $n = 36$	AO1.1a	M1	$S_6 = 3(2a+5d)$ $= 6a+15d$
	Finds correct expressions for S_6 and S_{36}	AO1.1b	A1	$S_{36} = 18(2a + 35d)$
	Forms equation in a and d using their $S_{36} = (their S_6)^2$	AO3.1a	M1	= 36a + 630d
	Expands quadratic and collects like terms to obtain printed answer Only award for completely correct solution with no errors	AO2.1	R1	$36a + 630d = (6a + 15d)^{2}$ $36a + 630d = 36a^{2} + 90ad + 90ad + 225d^{2}$ $4a + 70d = 4a^{2} + 20ad + 25d^{2}$
(b)	Uses u_n for arithmetic sequence with $n = 6$	AO1.1b	B1	$a+5d=25 \Longrightarrow d=\frac{25-a}{5}$
	Eliminates a or d using their ' a +5 d = 25' and the printed result in part (a) to obtain a quadratic in one variable	AO1.1a	M1	$4a + 70\left(\frac{25-a}{5}\right) = 4a^2 + 20a\left(\frac{25-a}{5}\right) + 25\left(\frac{25-a}{5}\right)^2$ $4a + 350 - 14a = 4a^2 + 100a - 4a^2 + 625 - 50a + a^2$
	Obtains correct quadratic equation Need not be simplified	AO1.1b	A1	$350-10a=100a+625-50a+a^2$
	Solves their quadratic $a = -5$, $a = -55$ (or $d=6$, $d=16$)	AO1.1a	M1	$a^{2}+60a+275=0$
	Deduces min value $a=-55$ NMS $a=-55$ 5/5	AO3.2a	A1	$ \begin{array}{l} a = -5, & a = -55 \\ (or \ d = 6, \ d = 16) \\ a = -55 \end{array} $
	Total		9	

Q	Marking Instructions	AO	Marks	Typical Solution
10(a)	Uses model to form an equation to	AO3.4	M1	
	find k with $t=5.7$, $m = \frac{1}{2} m_0$			$200 = 400e^{-kx 5.7}$
	Obtains correct value of k	AO1.1b	A1	1 0 10100 17
	Uses model to find m			<i>k</i> =0.1216047
	with $t=4$, $m_0 = 400$ and their k	AO3.4	M1	$m = 400 \text{ e}^{-0.1216 \times 4}$
	(Condone <i>m</i> ₀ =200)			$m = 400 \text{ e}^{-3/2}$
	Obtains correct value of <i>m</i>			
	CAO	AO1.1b	A1	m = 250
	(245.9296) AWRT 250			
(b)	Uses model to set up inequality or	AO3.1b	M1	$400e^{-0.1216t} \le 280$
	equation using <i>their</i> k and 280	A03.10		
	Solves their inequality or equation			$e^{-0.1216t} \le 0.7$
	to find t			$-0.1216t \le \ln(0.7)$
	(Follow through their k only)	AO1.1b	A1F	<i>t</i> ≥ 2.933
	(~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			1 2 2.935
	(2.933067)			-
	Interprets <i>their</i> solution	AO3.2a	A1F	10:56 am
	(Only follow through if time is earlier than 1:42 pm)	AU3.2a	AIF	10.50 am
(c)	States any sensible reason such			
	as:			Different people eliminate caffeine
	Different people eliminate caffeine			at different rates
	at different rates			
	The model is based on an everage			
	The model is based on an average person			
	person	AO3.5b	B1	
	The length of time taken to drink			
	two cups of coffee may have been			
	significant			
	The amount of caffeine in a "strong			
	cup of coffee" may vary			
	Total		8	

Q	Marking Instructions	AO	Marks	Typical Solution
11(a)(i)	Uses model to form equation with <i>V</i> =0	AO3.4	M1	$\therefore 10 + 100 \left(\frac{T}{30}\right)^3 - 50 \left(\frac{T}{30}\right)^4 = 0$
	Rearranges to isolate T^4 term	AO1.1a	M1	(30) (30)
	Completes rigorous and convincing argument to clearly show the required result. Need to see evidence of division by T to isolate T^3 term Must be an equation throughout AG	AO2.1	R1	$\Rightarrow 50\left(\frac{T}{30}\right)^4 = 10 + 100\left(\frac{T}{30}\right)^3$ $\Rightarrow \frac{T^4}{16200} = 10 + \frac{T^3}{270}$ $\Rightarrow \frac{T^3}{16200} = \frac{10}{T} + \frac{T^2}{270}$ $\Rightarrow T = \sqrt[3]{\frac{162000}{T} + 60T^2}$
11(a)(ii)	Calculates <i>T</i> ₁ (44.96345)	AO1.1a	M1	<i>T</i> ₁ =44.963
	Calculates T_2 and T_3 (49.98742) Condone greater than 3dp (53.50407)	AO1.1b	A1	$T_2 = 49.987$ $T_3 = 53.504$
11(a)(iii)	Explains 38 in context	AO3.2a	B1	38 represents current year 2018
11(b)	Translates 2029 into t=49	AO3.3	B1	$10+100\left(\frac{t}{30}\right)^3-50\left(\frac{t}{30}\right)^4=4.5\times1.063^t$
	Uses models to set up equation or evaluate both models at one value of t	AO3.4	M1	$\Rightarrow t = 49.009$
	Obtains correct values for both models for two appropriate values of t . $t \in [49, 50]$ eg t =49 and t =50 t =49 gives: 89.89 and 89.81 t =50 gives: 87.16 and 95.47 Or Solves equation using any method to obtain AWFW 49.009 to 49.01	AO1.1b	A1	1980 + 49 = 2029 Therefore use of oil and production of oil will be equal in the year 2029
	Explains that the use of oil and the production of oil are equal when $t = 49.009$ Or Uses a change of sign argument OE to explain that the value of each model for two appropriate values of t shows that the production of oil and the use of oil are the same for $t \in (49, 50)$ Total	AO2.4	E1	

MARK SCHEME – A-LEVEL MATHEMATICS – 7357/1 – JUNE 2018

Q	Marking Instructions	AO	Marks	Typical Solution
12(a)	Begins a proof using a valid method Eg. Factor theorem, algebraic division, multiplication of correct factors Constructs rigorous mathematical	AO1.1a AO2.1	M1 R1	$p\left(-\frac{1}{2}\right) = 30 \times \left(-\frac{1}{2}\right)^3 - 7\left(-\frac{1}{2}\right)^2 - 7\left(-\frac{1}{2}\right) + 2$ $= 0$ $\therefore 2x + 1 \text{ is a factor of } p(x)$
	proof. To achieve this mark: Factor theorem the student must clearly substitute and state that $p(-1/2)=0$ and clearly state that this implies that $2x + 1$ is a factor Algebraic division OR Multiplication of correct factors The method must be completely correct with a concluding statement			
(b)	Obtains quadratic factor PI	AO1.1a	M1	$p(x) = (2x+1)(15x^2 - 11x + 2)$
	Obtains second linear factor	AO1.1b AO1.1b	A1 A1	=(2x+1)(5x-2)(3x-1)
	Writes $p(x)$ as the product of the correct three linear factors. NMS correct answer 3/3	AUT.ID	AT	
(c)	Rearranges to achieve a cubic equation in sec x (or cos x)	AO3.1a	M1	$\frac{30\sec^2 x + 2\cos x}{7} = \sec x + 1$
	Equates to zero and uses result from (b) or factorises	AO1.1a	M1	$\Rightarrow 30 \sec^2 x + 2\cos x = 7 \sec x + 7$
	Deduces that if solutions exist they must be of the form sec $x = -\frac{1}{2}$, sec $x = \frac{1}{3}$ or sec $x = \frac{2}{5}$ OE	AO2.2a	A1	$\Rightarrow 30 \sec^3 x + 2 = 7 \sec^2 x + 7 \sec x$ $30 \sec^3 x - 7 \sec^2 x - 7 \sec x + 2 = 0$
	Explains that the range of $\sec x$ is $(-\infty, -1] \cup [1, \infty)$ OE OE for $\cos x$	AO2.4	E1	$\Rightarrow (2 \sec x + 1)(5 \sec x - 2)(3 \sec x - 1) = 0$
	Completes argument explaining that there cannot be any real solutions as values are outside of the function's range.	AO2.1	R1	$\Rightarrow \sec x = -\frac{1}{2}, \frac{1}{3}, \frac{2}{5}$ These values do not fall within the range of sec x as they are between -1 and 1 $\therefore \frac{30 \sec^2 x + 2\cos x}{7} = \sec x + 1$ has no real solutions.
	Total		10	

PMT

Q	Marking instructions	AO	Mark	Typical solution
13	Identifies and clearly defines consistent variables for length and width. Can be shown on diagram.	AO3.1b	B1	Width of rectangle = $2x$ Length of rectangle = $2y$
	Models the area of rectangle with an expression of the correct dimensions	AO3.3	M1	A = 4xy
	Eliminates either variable to form a model for the area in one variable.	AO1.1a	M1	$x^2 + y^2 = 16$
	Obtains a correct equation to model the area in one variable	AO1.1b	A1	$A = 4x\sqrt{16 - x^2}$
	Differentiates their expression for area. Condone one error	AO3.4	M1	$\frac{dA}{dx} = 4\sqrt{16 - x^2} - \frac{4x^2}{\sqrt{16 - x^2}}$
				$\frac{dA}{dx} = \frac{64 - 8x^2}{\sqrt{16 - x^2}}$ For maximum point $\frac{dA}{dx} = 0$
	Explains that their derivative equals zero for a maximum or stationary point.	AO2.4	E1	dx $\frac{64-8x^2}{\sqrt{16-x^2}}=0$ $x = 2\sqrt{2}$
	Equates area derivative to zero and obtains correct value for either variable. CAO	AO1.1b	A1	When $x = 2.8$, $\frac{dA}{dx} = 0.448$ When $x = 2.9$, $\frac{dA}{dx} = -1.191$
	Completes a gradient test or uses second derivative of their area function to determine nature of stationary point	AO1.1a	M1	Therefore maximum
	Deduces that the area is a maximum at $x = 2\sqrt{2}$ or $\theta = \frac{\pi}{4}$	AO2.2a	R1	The maximum area is 32 sq in
	4 Values need not be exact			
	Obtains maximum area with correct units AWRT 32	AO3.2a	B1	1
	Total		10	

Q	Marking instructions	AO	Mark	Typical solution
	Explains why $\angle EFQ = A$			$\angle OQR = \angle FQE$ vertically opposite
14(a)	Must be a fully correct explanation with reasons which may include: Vertically opposite angles and right angle implies similar triangles.	AO2.4	E1	angles $\angle ORQ = \angle FEQ = 90^{\circ}$ So $\angle EFQ = A$
	Deduces $\frac{PF}{EF} = \cos(A)$ AND $\frac{EF}{OF} = \sin(B)$ Must have at least stated or implied that $\angle EFQ = A$ through similarity	AO2.2a	R1	Since $\angle EFQ = A$ $\frac{PF}{EF} = \cos(A)$ And $\frac{EF}{OF} = \sin(B)$ in triangle OEF
14(b)	Completes proof	AO2.2a	B1	$\frac{DE}{OE} \times \frac{OE}{OF} + \frac{PF}{EF} \times \frac{EF}{OF}$ $= sinA cosB + cos A sin B$
14(c)	Explains that the proof is based on right angled triangles which limits A and B to acute angles	AO2.3	E1	Since the proof is based on the diagram which uses right-angled triangles it is assumed that <i>A</i> and <i>B</i> are acute. Therefore, the proof only holds for acute angles.
14(d)	Substitutes $-B$ into identity for $sin(A+B)$ to give $sin(A-B)$	AO2.1	R1	$\sin(A-B) = \sin A \cos(-B) + \cos A \sin(-B)$
	Recalls at least one of the identities sin(-B) = -sin(B) cos(-B) = cos(B) Must be explicitly stated	AO1.2	B1	sin(-B) = -sin(B) cos(-B) = cos(B)
	Deduces correct identity with no errors.	AO2.2a	R1	Hence $\sin(A-B) = \sin A \cos B - \cos A \sin B$
	This must be clearly deduced from a correct argument and not simply stated.			
	Total		7	

_				
Q	Marking instructions	AO	Mark	Typical solution
	Forms expression of the correct	AO1.1a	M1	Gradient of AB
15(a)	form for the gradient of the line AB			$= \frac{(-4+h)^3 - 48(-4+h) - ((-4)^3 - 48(-4))}{h}$
	condone sign error			$=\frac{(1+1)^{2}}{(1+1)^{2}}\frac{1}{(1+1)$
	Obtains correct expansion of	AO1.1b	B1	
	$(-4+h)^3$			$=\frac{h^3-12h^2+48h-64-48h+192-128}{h}$
	(-4+n)			
	Obtains correct expansion of	AO1.1b	A1	$=\frac{h^3-12h^2}{h}$
	numerator			= $$
	Simplifies numerator and shows	AO2.1	R1	$=h^2-12h$
	given result			-n 12 n
	Ĭ			
15(b)	Explains that as $h \rightarrow 0$ the gradient	AO2.4	E1	The gradient of the curve is given
	of the line AB \rightarrow the gradient of the	,		
	•			by $\lim_{h \to 0} h^2 - 12h$
	curve or tangent to the curve			
	Or			
	gradient of curve is given by			
	$\lim_{h\to 0} h^2 - 12h$			
	Must not use $h = 0$			
		100.1	F 4	
	Explains that $\lim_{h \to 0} h^2 - 12h = 0$	AO2.4	E1	As $h \rightarrow 0$, $h^2 - 12h \rightarrow 0$ therefore
				A must be a stationary point
	therefore A must be a stationary			
	point			
	Total		6	
	IOtal		U	
	TOTAL		100	
	IUIAL		100	